Theory of Machines and Mechanisms

Olympiad for Students of Russian Technical Universities 2008

Problems

TMM – 1 Mark: 2 points

- 1. Determine the number of degrees of freedom (DOF) *W* of the mechanism shown.
- 2. Dismember the mechanism into *Assur* kinematic chains, using all initial links. Make classification of found kinematic chains.
- 3. Set up structural formulas of the mechanism. Determine class of the mechanism.

TMM – 2 Mark: 4 points

Make kinematic synthesis of four-bar linkage on the base of three given positions of crank OA (link1) and three corresponding positions of rocker CD (link 3).

$$A_1D_1 \neq A_2D_2 \neq A_3D_3$$

Use Fig.1 (Appendix 1) for graphical solution.

TMM – 3 Mark: 5points

Given: kinematic scheme of mechanism;

 $l_{o_{1}A}$ – length of crank; l_{AB} – length of connecting link;

 l_{o_1B} – length of rocker; $l_{o_1o_2}$ – distance between fixed hinges.

Determine analytically:

- 1) angular velocity ratio for rocker 3: $\omega_{q_3} = \frac{\omega_3}{\omega_1}$;
- 2) angular velocity ratio for connecting link 2:

$$\omega_{q_2} = \frac{\omega_2}{\omega_1};$$

What condition should be satisfied in order ω_{q_3} takes maximum value?

TMM – 4 Mark: 5 points

Given:

$$l_{OA} = 0.3 \text{ m};$$
 $l_{AC} = 0.4 \text{ m};$ $l_{CD} = 0.35 \text{ m};$ $\alpha = 40^{\circ};$ $a = 0.5 \text{ m};$ $b = 0.9 \text{ m};$ $\omega_{_{1}} = 7\frac{1}{\text{s}};$ $\varphi_{_{1}} = 45^{\circ}.$

Determine velocity and acceleration of point D which belongs to link 5.

Fig. 2 (Appendix 2) shows the kinematic scheme of the mechanism.

This problem worth 3 points if being solved in a general form (without calculations).

TMM – 5 Mark: 6 points

Given:

$$\omega_{1} = 10 \frac{1}{s}; \quad \alpha = 45^{\circ};$$

$$l_{O_{1}A} = l_{O_{2}B} = l_{BC} = 0.1 \text{ m}.$$

Mass of link 5 is m = 10 kg. Center of gravity of link 5 is located at point D. All the rest links are assumed weightless.

At the position shown compressed spring exerts the force of $F_{el} = 100 \ N$.

Determine:

- 1. Torque M_1 to be applied to crank shaft 1 in order to provide zero angular acceleration of the crank shaft $(\varepsilon_1 = 0)$ at the shown position.
- 2. Constraint forces acting at revolute pair C and prismatic pair D (provided that $\varepsilon_1 = 0$).

Assume $g = 10 \text{ m/s}^2$ for the acceleration due to gravity.

TMM – 6 Mark: 5 points

Given:

Gear ratio $U_{H-1}^3 = 40$; $z_1 = 40$; $z_2 = 12$. Dimensionless shift coefficient of cutting rack for wheel z_1 (shift of cutting rack divided by module) is $x_1 = 0.2$. Angular speed of bracket H is $\omega_H = 10 \frac{1}{s}$. All links have equal mass of 0.1 kg. All wheels have the module of m = 1 mm.

Determine:

- 1. Shift coefficient of cutting rack for wheel z_3 in order to provide zero backlash. Gear wheel z_2 has no undercut.
- 2. Inertia force acting on satellite bearings.

TMM – 7 Mark: 7 points

Given:

Number of teeth $z_1 = 16$; $z_2 = 40$; $z_4 = 14$; $z_5 = 43$. H denotes bracket, I and II – input and output shafts, respectively.

Determine ratios:

$$\frac{\omega}{\omega}_{\mathrm{I}}; \quad \frac{\omega}{\omega}_{\mathrm{I}}.$$

TMM – 8 Mark: 6 points

Given:

r = 0.030 m; e = 0.015 m.

Both driving torque M_d and resistance force Q are assumed constant while the system is in steady-state (normal) operation. Force Q = 1200 N acts only during rise of follower.

Coefficient of Coulomb friction within the pair «cam-follower» is f = 0.1.

Any force of resistance except for Q, as well as weights, is to be neglected.

Reduced moment of inertia of the aggregate takes constant value of $I = 4 \text{ kg} \cdot \text{m}^2$.

Determine:

- 1. Total resulting moment of resistance and friction $M_C = M_Q + M_F$ reduced to cam shaft, as a function of angle φ . Calculate M_C for $\varphi = 0$, and $\varphi = \pi$.
- 2. Value of reduced driving torque M_d .

NOTE: No equivalent mechanism can be used to find $V_{A_1A_2}$.

Fig. 1

Fig. 2